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Abstract

There are some curved interfaces in acoustic waveguides. To compute wave propagation along the waveguides with some

marching methods, flattening of the internal interfaces is needed In this papes a local orthogonal coordinate transform and an equation

transform are constiucted to solve the two-dimensional Helm holtz equation for the waveguides bounded by aflat top, aflat bottom and two

curved internal interfaces with three layered media. The cuwed internal interfaces are flattened by the local orthogonal coordinate trans

form, and the corresponding transformed Helmholtz equation can be solved by some marching methods This treatment can be extendedin

multilayered medium waveguides. The oneway reformulation based on the Dirichlet-to- Neumann (DtN) map is then used to reduce the

boundary value problem to an initial value problem. Numerical implementation of the resulting operator Riccati equation uses a large range

step method to discretize the range varable and a truncated local eigenfunction expansion to approximate the operators. This method is

particularly useful for solving long range wave propagation problems in slowly varying waveguides with multilayered medium structure.

Keywords:
reformul ation.

The ocean environment is a well known acoustic
waveguide with multilayered media and allows sound
waves to travel a large distance in the horizontal di-
rection. In this environment, the surface, in general,
can be seen as even. The ocean bottom is com posed of
sediments and rocks. The interfaces between differ-
ent layers are usually curved. The range distance L is
many orders of magnitude larger than the typical
wavelength. The depth D is much smaller than L,
but still larger than the wavelength. This structure is
very common in acoustics, electro-magnetism, seis-
mic migration and other applications.

To compute wave propagation along the wave-
guides with some curved interfaces, a direct numeri-
cal computing is very expensive. Common numerical
methods, such as the finite element method and the
finite difference method, lead to very large linear sys-
tems. Meanwhile, these systems are also nonsym-
metric and indefinite. Thus, it is very difficult to

solve them by these methods. The coupled mode

I . 27
method ', and some approxim ate methods ~ " based
on exact one-way reformulations are popularly effi-

cient to solve the problem. However, these numerical

Helmholtz equation. local orthogonal transform DN reformuation. marching method internal interface one-way

studies focus on the waveguides with flat boundaries
or interfaces. Although these methods can be used for
the waveguide with curved boundary if the “staircase”
approximation is useds it needs a small range step.

Numerical methods have been developed to avoid
the crude “staircase” approximation. The approach of
Refs [ 8, 9] is to use a conformal mapping which
keeps the governing equation in a very simple form.
However, the conformal mapping is a global transfor-
mation that requires much effort for its calculation,
especially when the waveguide is very long and the
boundaries Cor interfaces) are complicated. Local
transform ations are easier to compute and they have

also been used in various applications[l(ku Local
but non-orthogonal transformations, such as the one
used in Ref.[ 12], change the normal derivative to a
combination of partial derivatives in the range and
transverse variables. The range derivative at the in-

terface or boundary can lead to difficulties in numeri-

. . 13 14
cal implementation. Local orthogonal transform' '

is an efficient method which flattens one curved bot-
tom or one internal interface and changes the normal

derivative at the interface only to the partial deriva-
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tive in the transverse variable. Furthermore, under

an orthogonal transformation, the transformed
Helmholtz equation does not involve the cross deriva-
tive term and it can be solved by some marching

methods.

For the waveguides with at least two internal in-
terfaces, it is necessary to use a transform that can
flatten the curved interfaces. In this paper, we devel-
op a new local orthogonal coordinate transform and a
new equation transform for the acoustic waveguide
with two curved internal interfaces and derive out the
so-called “improved Helmholtz equation” with two
flat interfaces. And some numerical examples are also
given.

1 Basic equation

We start with the two-dimensional Helmholtz
equation with two curved internal interfaces
Uy + Uy, + 6 (z,2)u =0 (1)
for —0<z< + 0, 0<z2<D,, where the first lay-
er with density p; is located in 0< z<h;(z), the
second layer with density p, is located in h,(z) <=z
<h,(x), and the third layer with density p; is lo-
cated in h,(z)<=z<D,. The internal interfaces are
two curves 2 =h,(z) and z = h,(z), where D, >

1, L> D‘>>”£‘, u represents Fourier transform of

acoustic pressure, and « is called wavenumber. We
also assume the problem is range independent(i.e. «
and h are independent of x) for x<X0 and =L,
that is

hios <0
hy(z) = {hl,m, x =1L
hyo x<0
holx) = {hz,m, x =1L
ko(z), <0
Rty at) = {xm(zx 2>

The boundary conditions on the top and the bottom
are supposed as u | ,_q=0 and u|,_, =0. The in-
1

terface conditions mean that

lim u(x,z)= Ilm u(=x,z2),
z—>hl(1)¥ z-~h‘(1')f
1 Fis Qu(x,z) 1 T Qu(x,z)
- ]
) O1 2= () on 02 eh ()" on
lim u(x,z) = lim u(x,z),
z—>h2(1)7 z-‘hz(z)*
1 lim Qu(x,z) 1 lim u(x,z)
02 zehy(2)” on 03 zhy()* on

where 7 is a normal vector of the interface z = h,(x)
or 2 =h,(x) (Fig. 1).

Since Helmholtz equation can be easily solved by
separable variable method for x<C0 or z==L, we on-
ly need to solve the equation for 0<Cx<CL. If there
are no waves coming from + o, the exact boundary

condition (radiation condition) at = = L is u, =

iy 8i+/c<2,°(z)u, where ¢ = V —1 and the square

root operator is defined in Ref. [4]. The simplest
boundary condition at x =0 is u = uy(z), where

uo(z) is a given function of z.
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Fig. 1. Sketch map of waveguide with curved internal interfaces.

For simplicity of derivation, we develop our
method for the waveguides with two curved internal
interfaces. Here, we suppose that there is a straight
line z = D between h;(x) and h,(x), and there is
a unique solution for Eq. (1) with the boundary con-
ditions and interface conditions.

2 Local orthogonal transform

The acoustic waveguide is assumed as two parts
separated by z =D,. We transform the two parts in-
to new coordinates (£, 2). In the new coordinates,
h,(z) is transformed into 1, h,(x) is transformed
into H, and D, is transformed into D,. To avoid
squeezing the coordinate net in the new variable plane
into narrow coordinate net in the (x, z) plane, we
further divide the layer below z =%,(z) to two sub-
layers, h,(z) <z <D and D< z< D, with the
added interface * = D. Then the marching methods
can be applied in the new coordinates. The detailed
transform scheme is as follows:

(i) The first layer 0<X2<Ch;(x) in a medium
with density[m p1- Let

2 = f(x,z)

2 =g(x,2) = eS)
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satisfy
(z,2) 10K 2< L0 2 < ()
L8 (2,2) 10<2<L,0< <1}

where the function f is to be determined. The trans-
form is required to be orthogonal. Therefore,

@[_a _[ og -~
or Ox az oz

If h;(x)?f(), then the relationship between (x, z)
and (£, £) is represented by
rhl(t)
2 h;(t)
If h;(x)=0, let #==x.

de + %(2h1(1))2 =

(ii) The second layer h,(z)<X2<XD, in a medi-
um with the density™*’ p,- Let
{i' =, f(z,2)
_ _ zZ — hl(l')
2 = g(x,z) = _——Do_hl(l’)b.(D 1) +1

satisfy
(z,2) 10< 2 <L, hy(2) < 2 < Dy
L {(2,2) 10< 2 <L, 1< 2 <Dyl
The relationship between (z, z) and (£, £
sented by

JI Do-hl(t)

& kgle)

~ (h(z*) = D)?1 =0

where (2%, h,(z*)) < (2,1). If A (x)

L=Ts

is repre-

%[(z — Dy)*

=0, let

(iii) The third layer Dy<\2<Xh,(x) in a medi-
um with the density p,. Let 2= f(z,z) and

z :f(x’z)

z — D,
2:g(:c,z):———hz(l)_DO-(H—DO)+D0
satisfy
(z,2) 10< 2 < L,Dy < 2z < hy(x)}
LE1(2,8) 10<2<L,Dy< 2 <H]

The relationship between (z, z) and (£, 2) is repre-

sented by
JC}"Z(t)_l)() l %
L——«h,() dt + 5 (z = Dy = 0

where (z, h (1)) ~(z,D,). Ifh (z)=0, let

x—l‘.

(iv) The fourth layer h,(z)<\2<XD in a medi-
um with the density p;. Let

z = f(z,2)
z — hy(x)
y = 3 = e el D —
2 =glz,2) D= h,(2) ( H)+H
satisfy
{(2,2) 10K 2 < L hy(z) < 2 DY
&i(f,z) 10<2<L,H< <D}
The relationship between (z, z) and (z, £) is repre-
sented by
= D — h,(t) 1 3
==t - -D
Jz* hz(t) t 2[(Z )
- (hz(-r*) - D)z] =0

where (z”, hy(z ))<=~ (2, H) and (7, D)<~
(2,D). H hy(2)=0, let z=1z.

(v) The fifth layer D <2
with the density p;. Let

& = f(z,D)

2 =glx,2) =z

< D, in a medium

satisfy
{(z,2) 102z <L,D< 2 < Dy}

LE(2,2)10<2<L, DL <D}

3 Equation transformation

Because Eq. (1) is expected to be transformed as
Ve +als,2)V,, + Bl2,2)V, +yl2,2)V =1

(2)

welet u(z,2)=W(x,2)*V(x,z), where W can

be derived out by the idea in Ref. [14]. The coeffi-
cients of Eq. (2) are obtained as follows:
)
8.t 8,
a(z,2) = 2 2
Fut Lo
2Wg, +Wg , +2Wg + Wg
18(2.2) = z2 . 2
W(f, + f2)
( ) = W, +W, +« ‘w
7(z, 2
£y 8 W(f . )
(3)

In this section, we will develop an efficient algo-
rithm to compute the coefficients of transformed
equation in the multilayered waveguide. We have
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h;(l‘) * hl(\f)
h;(f)'hf(x)’ 0<z<h1(1)

W(x,z) =9P(x) /

P(x)

fx(xaz) =9

/hlm Dy-hy(z*) ki)
h;(f) hl(x*) [D()_hl(l”)]z’

P(3) /hz(f)‘DO. B=lign ) Bgis)

folx,z) =

g.(x,

and

hi(z) <z< D,

hy(z) + (hy(Z) — D)
hy(Z) + (hy(z) = Dy)*’

Dy < 2z < hy(x)

hy(Z) hy(z*) =Dy [D - hylz)1”’ h(z)<=2<D
/hza-z)—DO' D-hy(a*) _ hya)
h(Z)  Ry(z*)-D, D-—hy(x)’
hy(2)hy(2)
R(2)[Dy — hy(x)]h,(z*)
hy(2) R (2)[Dg = hy(2™)]
hy(D)[hy(z) = Dyl
hy(2)[hy(2) - Dyl
hy(D)[D = hy(2)1[hy(z*) = Dy]
[hy(Z) = Dolhy(2)[D = hy(z*)]’
hy (DD ~ hy(2)1[hy(z*) = D]

D<z<D,

0<2<<h ()

hl(x) <z < D,

P(x) D0<z<h2(z)

P(%) hy(x) <z<D

Plxz = . <z<D

( ) [hz(-;) - Do]hz(l')[D - hz(l' )] !
h(2)

2 (2) (ET o WED

hy(z*)h,(2)[Dg - 2]
h(2)[Dy - hy(z*)]’
hy(z)
ho(Z) — Dy’
[hy(x*) — Dylhy(2)[D - 2]

hfz) L e Dy

P(f)[z—DO] Dogzéhz(x)

¥ - = bl e
P(2) T (@) — DD - (2] ')
0 D e Iy
—zh;(x)
= el e b
K z) 0 tik)

[z — Dolh;(2)[Do - 1]
[Dy - hy(2)]?
z) =9- [z — Dylhy(z)[H — D,]
[hy(z) — D, J?
[z - D]hy(2)[D - H]
[D - hy(2)]?
0 D<=z

) h1(1)<2<D0

, Do<z<hy()

’ h2(1)<Z<D

N

D,

(4)

(3)

(6)

(7)
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hl(.l')’ 0<z hl(x)
Dy - hi(z) M{E)S=z<Dg
(z,2) = H-D
g(xz {h(x)—oD, D0<Z<h2(1)
2 0
D-H
~hy(2) hy(z)<z<D
1 D<2<Dl
(8)
where

e Bt 1
s h (1) Do - hl(l' ) 2 hl(f) 4
P(x) = - *
h (.2) DO - hl(l') hl(x )
Here, the waveguide is divided into two parts

(Part I, Part II) by z = D, between the two curved
interfaces z =h,(z) and 2 = h,(x).

In Part I, the coefficients are the same as that
obtained in Ref. [14], and it is expressed as a special
case of a;(2,2),8,(2,2), 7,(2,2)(j =1,2) listed

*,DO,H, and D are

0,1, and Dy, respective-

in Appendix 1, where h(x), x
substituted by hl(x),x*,
ly. In the first layer,
a(z,2) = ay(2,2)
B(z,2) = B(z,2) (9)
7(2,2) = 7/(2,2)
In the second layer,
a(z,2) = ay(z,2)
B(z,2) = B,(2,2) (10)
¥{2,2) = ysl2.2)

In Part II, the coefficients are expressed as for-
mulas constructed from o; (2, 2), B(z, 2), (2, 2)
(j=1,2,3) listed in Appendix 1, where A (z) and
£ are substituted by h,(x) and z, respectively. In
the third layer,

a(z,2) = M(2)e,(2,2)

Jﬁ(fs,z) M(z)p,(2,2)

P
M(x)71(2,2)+M(2)f
(11)

r(z,2)

In the fourth layer,
a(z,2) = M(2)ae,(z,2)

18(z,2) = M(2)B,(z,2)

Il

P
M(2)7,(z,2) + M(2) 5~
(12)

y(z,2)

In the fifth layer,
a(z,2) = M(2)a,s(2,2)

Ba,2) = M(z2)B(2,2)

y(z,2) = M(2)7,

(13)

> Por. .
where M (2) = P(2)*, M(i)? is given in Ap-

pendix 2.

Remark 1. The formulas (9)—(13) can degen-
erate into the previous formulas with one internal in-
terface when h(x) or h,(z) becomes straight line.

Remark 2. Formulas for coefficients of trans-
formed system in an arbitrarily layered medium struc-
ture can be developed by extending (9)—(13).

4 Interface conditions

Range discretization and matrix approximations
are the same as that in Ref.[14], so we omit them
here for simplicity. We only list the differences for
the boundary and interface conditions.

For Eq.(2), the top and bottom boundary con-
ditions are
Vieo=0, Vi, =0
The interface conditions between the first and

the second layer (at £ =1) become
(WV) ;- = (WV) |, _¢

w4 -2 ]

1
RERINENk |

hi(z) v 21"
1 f1f,- h(2))?
- pzw{ 5 {:hl(x) +25 hl(x)}v
DO
T NI

z—>1

At the interface £ = D, between the second and
the third layer,
WV I, .p = wv I2—>D;’
0

H-D,

ok M wo——t
hylz) = Dy ** 2D,

W—— =
hl(x) == DO 2 2—>D;

The interface conditions between the third and
the fourth layer (at £ = H) become
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LB a2

+ %P(f)[h;(x) -2

_ ﬁf]p{

Ih;(x)iz}} -

hz(x)
e Lo lh;(x)§2
- P(x) _——hz(x) Vz} o
dr _ hy(2)[hy(x) = Dy dz _ ho(Z)
dx h;(l')[hz(-;) _Do]’dz [hz(;;)_Do]

di _ [ry(z™) = Dol (D)[D - hy(x)] gz

=(h(2) = K{(2)r,(2)
hi(2)h,(2) Dy — hy(z*)]
[Dg = ~y (D) PRy (=)
N R(2)h(2)[Dy — hy(z™)]
[Dy — k(D) ]k (=)
N Dohi(z* )R (2) }
[1+ A (x*)1[Dy - h(z*)]n (™)

y ; 1
/{2h,(z)2[h1(x)hl(5)]2

T .y
'[Doh—l(hizi)}z[Dohl(h;ij )T}

When 2, (z)=0 or h,(z) =0, the formulas can be
obtained by referencing Appendixes 1 and 2. Details

are omitted here.

At the interface between the fourth and the fifth
layer (at £=D),
WV il,.p = WV I, p
H-D

W —"/—~ 7V

hy(x) =D %l,.p = WVe lewp?

5 Numerical examples

The method presented in the previous section has
been tested on a number of examples. Four of them
are given below. In the first example, the waveguide
is divided into three layers by two curved interfaces z
=h,(z) and z = h,(x), and the peaks of h,(z)
and h,(x) are at the same x-position; the second ex-
ample is the example in Ref. [14], we redo it by our
method; the third one is with two curved interfaces z
=h,(x),z=h,(z) with peaks at different z-posi-
tions; and the fourth one considers a thin strip be-

[Z - Do]

el

[1+ 1Ay 11V, |

+ ‘;—P(f)[h;(x) +2

D-H

-PDp - h,(x)

e—~H
where

D, <:<H

[hz(x*) - Do]h;(-;)[D - hz(-r)]

[hy(£) = Dylhy(2)[D — hy(z*)] dz

[h,(Z) — D1[D - hy(z*)] H<2<D

tween two curved internal interfaces.

Example 1. Let

16, 0< 2z < hy(z)
£ =40.7x16, h(x)< z< hy(x)
0.2x16, h,(z) < =z< D,

with L=10, n» =30, D,=1.5, H=2.5, D=3,
D,=4, N =400, p, =1,
;_1)

h(z) =1 - elenal(L 2 3

e, =1.7, p3=2.7,
2

, €1=6,=0.1, 6,=0,=10, 0<=z<C
4, and 0<Xx< 10, where N is the number of points
to discretize the £ variable, n is the number to trun-
cate the N X N matrices that approximate the opera-

oo i . [14]
tors appearing in marching process.

Here, V (0, 2) is given by the eigenfunction
whose corresponding eigenvalue is the largest one at x
= L. After flattening the two curved interfaces by

the orthogonal transform we suggest, we can use the

marching scheme'™* to compute the solution u (z, )

at £ = L. The corresponding solution is shown in
Fig. 2.

Example 2. Let

16, 0< z< h(x)
K = 07X16, h1(1)<z<h2(1)
0.7x16, h,(z) < =z< D,

with L=10, » =30, D,=1.5, H=2.5, D=3,
D=4, N=400, p, =1, p,=1.7, p;=1.7,
_0(1_1)2
Blzi=1—gr F %, hlz)=H, g,=0.2;

6,=20, 0<Xz<{4, and 0<<z<10.

The corresponding solution is shown in Fig. 3.
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0.14
0.12f
0.1

(a)

0.081
0.061
0.041
0.02

Re (u)

—0.02 TR : L 1 . 1
0 05 1 15 2 25 3 35 4
Depth z

0.06
(b)
0.05f
0.04

0.03

Im (u)

0.02f

0 05 1 15 2 25 3 35 4
Depth z

Fig. 2. Comparison of (L, z) for = % and = 2_;6 in Ex-

ample 1. (a) The real part; (b) the imaginary part.

0.16
0.14 ¢
0.12¢

0.1p
0.08
0.06
0.04¢
0.02

(@

Re (v)

(b)

Im (v)

05 1 15 2 25 3 35 4
Depth z

Fig. 3. Comparison of «(L, z) for r=% and = 2_;—6 in Ex-
ample 2. (a) The real part; (b) the imaginary part.

Example 3. Let
16, 0< z2< hy(z)

x =+10.7 X 16, hl(x)<z<h2(1)
0.2x16, hy(x)< =z< D,
with L=10, » =30, D,=1.5, H=2.5, D =3,
D,=4, N=400, p; =1, p,=1.7, p3=2.7,

The corresponding solution is shown in Fig. 4.

0.14
0.12f

0.1
0.08}
0.06}
0.04
0.02

ol
B T

(a)

Re (»)

0.06

(b)
0.05

0.04}
0.031

Im (u)

0.02
0.01

ol ...
0 05 1 15 2 25 3 35 4
Depth z

Fig. 4. Comparison of u (L, z) for r:*}t‘ and r=ﬁ in Ex-

ample 3. (a) The real part; (b) the imaginary part.

Example 4. Let
16, 0< z< h(x)
k =10.7x16, h(x)<=2z< hz(x)
0.2x16, h,(x)< =2< D,
with L=10, n =30, D,=1.1, H=1.2, D=3,
D,=4, N=400, o, =1, p,=1.7, p3=2.7,

_,(1_1)2
h(z) =1 - ¢ee """ 2, hy(z)=H -
oz
g8 ikl €;,=0.1, ¢,=0.05, 6,=0,=20, 0

<z<4, and 0<<x<10.
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The corresponding solution is shown in Fig. 5.

0.14
0.12

(a)

0.1p
0.08
0.06f
0.04
0.02

Re (u)

Im ()

05 1 15 2 25 3 35 4
Depth z

Comparison of u(L, z) for r:L and t:—L in Ex-

4 256
ample 4. (a) The real part; (b) the imaginary part.

Fig. S.

In Figs. 2—S5, the solid line is represented as

solution for 7 = ﬁ, and bold points are represented

as the solution for r = 4 The solution is obtained

. 1 “ ” .
with 7 = == as the “exact” solution, then we calcu-

256
late the relative errors of u (L, 2). The relative er-
rors of Examples 1—4 are 0.0016, 0.0102, 0.0041

and 0. 0023, respectively. The numerical examples
demonstrate that more accurate approximate solutions
can be obtained by quite large steps.

6 Conclusion

The result of this work has provided a theoretical
foundation for developing practical numerical scheme
for a class of acoustic waveguides with three layered
media and two internal curved interfaces. By con-
structing local orthogonal coordinate transformations,
the interfaces are flattened. This extends the previous
work ™! which covers waveguides with one curved in-
ternal interface. Furthermore, this treatment can be
applied to waveguides with more complex interfaces.
This method is particularly useful for solving long
range wave propagation problems in slowly varying
waveguides with multilayered medium structure. Nu-
merical examples demonstrate that our method is fea-
sible for solving the Helmholtz equation with three
layer media by a large range step. Since the deriva-
tives of interface function are used to derive the trans-
form, the method cannot be applied to the case where
the interface is piecewise smooth (with corners), un-
less the piecewise smooth interface is first approxi-
mated by a smooth one. In addition, we will study
for the case that there is not a straight line between
two interfaces in future.

Appendix 1
When h’'(x) =0, we define a(x, 2) =l,i{?a(j’
), B(z,2)=limp(z,2) and y(z,2) =limy(z,

£). The formulas for coefficients a;, g;,7;, j =1,2,
3 are given as follows:

If h'(x)7#0, then

(2.2} = D J[h"(2)[h(2) - D,)?
HAEEE = [h(x) - Dol*[h"(2)]?
2(z — Dg)[H — Dy112[h"(2)1* = [h(z) — Dolh" () [h"(2)*[h(2) — Dy)?
Bi(z,2) = 3147 2 2 2r, - 2
[h(z) — Do I’[R (2)]° 1 [h(x) — Dy)* + (2 = D) [h"(2) ]}
_ [A'(x)]® h(x) (= - DO)Z[ih”(f)fz —2h'(2)h"(2)
<71(I‘,2)— z[h(x)—Do]z h(l‘)—D0+ 4 [h(i)"Do]z
NETMESYMES NN ES T } , [ - Do]z[Zh'(x)h"(I) — h ()
[h(2) - D, " [h(2) - D,J* a[n'(2) ) [h(z) - D,]?
20 (2)h7(2) - W(:);z} [h'(x)ﬁ[[h(f) - D I’h’(2)
[h(2) - D,]? (R (2)’L  [h(2) - D,T
;[h(x)—DOJZ[h’(r)lz] . / 3
T4 [h(2) - D) R (GAY
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where (W (2)]'R"2)  1.. )
_h/(i)[h(x)"Do] 2 h(x)_D +4[h (j)]
e D Ly (o) ()|
/ -k (2)h" (2
1. = L= Dl iy, i -
I 4°(2) =0 and K () %0, then + LD~ BylliGe )]
Z)=0 an z then ko _ * s k1272
[H- D, -0 i [r(z") *DO]Z[D h(z 2][1+ih(x )]
a,(Z,2) = m (i[h/(r )I{D - 2h (2" ) + Dy}
B(%,2) = (5( ExH D,) 4 [h(z*) = DD ~ h(z™)}
X = ¥ — N )
! P, T B O ) O
L E) D! 1+ {h'(z*)} [D - h(z)]
[h(z) - DoI*° K@), 1K)
(‘ ) h (I) (z Do)z[—z—(bi—()-‘é-)ﬁo—]_z] D_h(I) 2 h (x)
s [r(z )—D] _1[Aa)] 2+,¢2(1 z)}
[1"(2))* + [h(Z) - D] (Z) 4 [h'(2)])

4[h(z) - Dyln"(z)

2 K(F) 2
(==Dy) Th(z)- (z — Dy)
[1-e O[h()D(,]]+ 40
s s
W ()T . —(z-uo)[—h(—’;i)%)[,—o]
. —[—J—L_ >tk (Z,2) e
[A(z) - D,]
2
i (z—-D,) B ()
2 z) - ,
with hm}’t—g(“% (= D"]. Ifr(z)=0
2=+3

1

and h"(Zz) =0, then al(i,2)=m,

B,(z,2)=0, and

— % @),
7,(Z,2) = £ (Z,2) - e 4D°) h"(z)

) [h(-f) - Do]

If B’ (x)##0, then
a,(2,2) = (D - H)?
D - RGP (2)T'[h(2) - D)
[D - h(z)]* (R (2)T[R(z") - DT
B,(z2,2) = 2(D -~ H)(2 - D)
2[n"(2)1* + [D - Dylh"(z) — K" (z)h'(z)

[D-h(2)]*+ [ (2)]%(D - z)*
Kl T8 — By T [D = sl *IT
X[h'(i):][ Blz™) ] [D-hi(z)]

AL

2
(Pt ooy
72(£ Z) [D*h(x*)]z
.[[h(x*)_Do]Z(*l [h,:.i2]4
[h(2) - D>\ 4 [h(2) - D)

[r(2) - Do ’[D - h(z*)[R (2)]
[h(z*) = DJ’[D — k() P[h"(2) ]2
If h'(z)=0 and A"(Z)7#0, then

ez, 2) = _(D-H)*
e [D-h(z)]?

5%,‘;%;(0-0 )+[h(2)-D,1-2(D-Dy)+(=D ) +(x=D )’}

2(D - H)(z - D)h"(z)
[D - hr(z)P
- FAZLs((2-D))"-2(D-D,)(2-Dy)+(D-D ) [h(2)-D, ]|

B(Z,2) =

7,(Z,2)

FoiZLs | (2-D)"~2(D-Dy)+(2-D ) +(D-D ) [(z)-D, i

.{h%ﬂ Uuﬂ—udwaxn—wz
k(z) — Dy D - Bz}
[(h(z) - D,]
D - k(%)

N 3e-—Dh_:}(l‘a—)I(z—Do)z—2(D—Do)-(z—Du)+(D—Do)-[h(i)-Doll}

3. __(D-Dy) - h(z)
4 [r(Z) - Dy][D - h(z)]

FAZL (2 h(2)2D-2-h(2)

2h"(x) ( )
+ _h()+lc(xz)+4h()[l
B ~§2L (2-D,)’-2(D-D,)(2-D,)+(D-D,)+[h(2)-D, ]}
with
h’{x}
S e

I FEL (2= D) -2(D-Dy)+ (- Dy) +(D-D)+[h(2)-D,
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Ifr" (z)=0and A"(z) =0, then o,(Z, £) =

(D-H)*
[D-h(2)]"
72(Z,2) = *(Z, 2) +%
(2=Dy)*~2(D = Dy)* (2~ Dy) + (D = Do) [h(Z) - Dy]

D-h(z)

B,(z,2)=0 and

'h(“(i)

If A"(2)7#0, then
[D - h(z*)P[h' (2)]*[h(2) - D,)?

a3(2:8) = T O T h (2) Flh(z") — D,

,33(-i92) =0

ae) = R 3w
e h(2) =Dy 4 [h(z) - Dol
+L_h”§z22_L_ R (2)
4 p(2) 2 h(2)-D,
D - D,

ID - h(z")] - [h(z") - D]
{2 e
D-2-h(z")+D,
[A(z*) =Dyl - [D - h(z™)]

_ h”ﬂx*! }
1+ A (z*)?
R (z*) + [h(2) - D,] }2
1+ h (2™ - r'(2) » [h(2™) - D]

7 - g D
+ {KZ(I,Z) + LR (1)4:};,2‘;;2_ bt
s 1022

2 D-h(x)

2

«h(z) [D-h(z)]+3- h'(LLZ}
4.[D-h(x)7?

h'(z)+ [h(2) = Dy] - [D - h(:c*)]}2

h'(2) + [h(z") = Dyl + [D - h(x)]

If A’(£)=0 and k" (Z)7#0, then

X

as(z,2) = ¢ B-Dy¥iz]
B3(f,2) =0
oy 3 B(E)
(2, 2) = 4 (%) - D]
_ 3 (%)
] 7 HEBE 4 'D—h(f)}

h'(z)

. e—(D—Do)h”(f)
[h(Z) — Dol - [D - h(Z)]

+

[h(Z) - D,] 3
X{——4 > —Z(D—Do)}
1 h(4)§22 -(D-DYK"(z) _
Ty W(z) {e 1}

IfA(z)=0and 2"(z) =0, then a,(Z,2) =1,
By(,2) =0, 75(2,2)=k*(%,2) =4 (D=Dy)*
h(4)(f).

Appendix 2

When h;(z) =0, we define P(z) =limP (1),

M(z)P—
M(f):li_{I}M(.f), and%)—“i:
. M(2)P "
im P . The formulas for P(z ), M (z),

P
M(z )f are given as follows:

If h(z)#0, then
o L_[hi(f)f[Do—hl(x*):l%
Plz) = [d2 = Laj(2)] L Dy - hi(3)
dz
D

1
]
hl(a:*)
——Qh"l(i)

If ;(z)=0, then P(z)=e *

If h,(x)F#0, then
h;(f)ﬂoo - hl(x*)T

M(z) =P(2)* = [

hi(2)] L Dy — hy(2)
el
“Lay(a™)
If h;(z)=0, then M(z)=e DM,

If ) (x)70, then
P ={h§(:e)2 — hi(2)hy(2)

R (2)h,(2)’[Dy — hy(2™)]
[Do - hl(;)]zhl(\r*)

R (2)h,(2)[Dy - hy(z™)]
[Dy — Ay (2) 1R (2™)

. Dok (2*)h,(2) }
[1+ A (2*)1[Dy - hy(z*) k(™)

, , 1
/{Zhl(i)thl(x)hl(f)]z

h(2) TE[Dy - hy(z*)TE
'[Do—hl(i)} [ R (z*) } }

If h;(z)=0 and &, (z )70, then
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T Ly v (= 1 0=
_ M LH) [ D@ _ D)

]

Ifh;(f)=0 and h:(f)=O, then P-(x) =

—%Doh’,"(i), and
P K(2) 3 h(2)
M} P h(z) 4 p(2)
1 R(@)Y 1 K (&)
AL Rk -
4 hl(i 2 hl(l')
D,

Dy - k(™) - hy(z?)
Dy-2-h(z")
}ZI(I*) * (D() - hl(I*))

X

3 b

B h,:(.l'*) }
1+ h;(x*)z

hi(x™) - h(2) ?

1+ h (™)) hi(2) - hy(2™)
{2 Ch(E) - RL(E) ~ K(F)

! 4. h(3)?

1 h(Z)

+ -
2 D;-h(2)

+2-h’;<5) . (Do—h1<5>>+3-h;(5)2}
41Dy — hy(D)I?
y h;m-hl(f)-(Do—h,u*))}z
hi(z) - h(z™) - (Dy— hy(2))
If hi(z)=0 and & (Z)7#0, then

_ Pl?_ l h:(f)
M) 5" =7 " hy(z)

3 R (Z) DA )
N T
K (z)
hl(f) * (DO—hl(‘i))

h(z) 3
X _ =2
4 4DO
@, _
+1 .h, (z) {_Dnh(;)_n

If h(£)=0and h;(z)=0, then

_x Lgr 1 (4) , _
M(z7) P =—Z'D0'hl4(1)
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